Group Theory in Music

Gemma Crowe

ggc2000@hw.ac.uk

Introduction

While group theory is traditionally studied in the world of abstract algebra and Pure Mathematics, it has various applications in the real world, including Physics, Chemistry and Cryptography. Here I will highlight some of the connections group theory has with Music. Links between Maths and Music can be found as far back in history as Pythagoras. I will focus on a more recent theory known as Neo-Riemannian theory, which was introduced in the 19th century by Hugo Riemann (1). Neo-Riemannian theory provides a link between some well known harmonic concepts in music, and group theory.

Group Theory	The \mathcal{PLR} Group
Definition 1 : A <i>group</i> is a set <i>G</i> equipped with a binary operation * such that the following hold:	From now on, we will denote $(a, b, c) \in \mathcal{M}$ as a minor chord, and $(A, B, C) \in \mathcal{M}$ as a major chord. We define the <i>parity</i> of a chord to be whether a chord in \mathcal{M} is either major or minor. We can define
1. Closure : For all $x, y \in G$, $x * y \in G$	three functions which act on the set \mathcal{M} , which are analogous to common terminology in music.

- 2. Associativity: For all $x, y, z \in G$, (x * y) * z = x * (y * z)
- 3. **Identity**: There exists a unique $e \in G$, called the *identity element*, such that for all $x \in G$, x * e = e * x = x
- 4. **Inverses**: For all $x \in G$, there exists $x^{-1} \in G$ such that $x * x^{-1} = x^{-1} * x = e$

One of the simplest examples is the set of integers \mathbb{Z} under addition. Here is another example which we all use in our day-to-day lives:

Example 1: The group of integers under addition modulo *n* are a group. For example $\mathbb{Z}_{12} = \{0, 1, \dots, 11\}$ can be represented by reading the time for A.M. and P.M. on a clock!

Chromatic Scale

In Western music, a *chromatic scale* is an ascending scale of all 12 notes, increasing each time by a semitone. We can label these notes as follows:

Note	C	$C\sharp/D\flat$	D	$D\sharp/E\flat$	E	F	$F \sharp / G \flat$	G	$G\sharp/A\flat$	A	$A\sharp/B\flat$	В
Label	0	1	2	3	4	5	6	7	8	9	10	11

You may notice this scale is equivalent to the group \mathbb{Z}_{12} , where our binary operation is equivalent to adding or removing sharps or

When combined, these three functions form a group!

Two chords are *parallel* if they have the same letter name, but opposite parity. In particular, we can define the following function to describe how to find corresponding parallel chords:

 $\mathcal{P}: \mathcal{M}
ightarrow \mathcal{M}$ $(a, b, c) \mapsto (a, b + 1, c)$ $(A, B, C) \mapsto (A, B - 1, C)$

For example, $\mathcal{P}(C \text{ minor}) = \mathcal{P}((0, 3, 7)) = (0, 4, 7) = C$ major.

The *leading note* is the note obtained when we move one semitone below the original note. This definition leads to another transformation known as the *leading tone exchange*, which preserves the third in the triad, and moves the remaining note by a semitone. In particular, we define this as:

 $\mathcal{L}: M \rightarrow M$ $(a, b, c) \mapsto (c + 1, a, b)$ $(A, B, C) \mapsto (B, C, A - 1)$

Two chords are *relative* if they are of opposite parity and share the same key signature, i.e. the same assignment of sharps/flats. Any minor chord is three semitones below its relative major chord, and so we can define the following to represent moving from a chord to its relative major/minor:

 $\mathcal{R}: M \to M$ $(a, b, c) \mapsto (b, c, a - 2)$ $(A, B, C) \mapsto (C + 2, A, B)$

These can be viewed pictorially below by a *Tonnetx diagram* (1). The numbers represent the pitch of

flats.

Major and Minor Chords

Let's consider the combinations of playing 3 notes in the chromatic scale simultaneously. These combinations are known in music as *triads*. There are $\binom{12}{3} = 220$ options for these, though we will focus on the more traditional choices known as major and minor chords. A *major* chord consists of a root, major 3rd and perfect 5th, whereas a *minor* chord consists of a root, minor 3rd and perfect 5th. If we denote (x, y, z) to be the three notes of a chord, we can represent all major and minor chords by the following set:

$$\mathcal{M} = \{(x, x + 3, x + 7), (y, y + 4, y + 7) \mid x, y \in \mathbb{Z}_{12}\}$$

using our notation from the chromatic scale. Note here we are looking at an unordered set, for example:

(0,4,7) = (4,7,0) = (7,0,4)

all represent a C Major Chord.

References

[1] F. Aceff-Sánchez, O. A. Agustín-Aquino, J. D. Plessis, E. Lluis-Puebla, J. Du Plessis, and M. Montiel, "An Introduction to Group Theory with applications to Mathematical Music Theory," *Serie: Textos*, vol. 15, 2012.

the notes based on the chromatic scale, and each triangle represents either a major or minor chord. The functions \mathcal{P}, \mathcal{L} and \mathcal{R} allow us to flip between triangles. The word 'Tonnetx' means 'tone network', and this diagram also represents other key properties from music. For example, each horizontal axis shows the *circle of fifths* (which also can be represented by \mathbb{Z}_{12} !).

Figure 1: Tonnetx diagram

Theorem 1: The set $G = \langle \mathcal{P}, \mathcal{L}, \mathcal{R} \rangle$ generated by the \mathcal{P}, \mathcal{L} and \mathcal{R} functions form a group, with binary operation defined as composition of functions. Proof of Theorem 1: We simply need to check the four group axioms defined in Definition 1. Closure: One would need to check that any composition of the \mathcal{P}, \mathcal{L} and \mathcal{R} functions gives another

- [2] A. S. Crans, T. M. Fiore, and R. Satyendra, "Musical actions of dihedral groups," *American Mathematical Monthly*, vol. 116, no. 6, pp. 479–495, 2009.
- [3] E. B. Roon, "That strikes a chord! An illustration of permutation groups in music theory," pp. 1–16.

 \mathcal{P}, \mathcal{L} or \mathcal{R} function (this is a rather tedious check which I leave for any interested reader!) Associative: Composition of functions is always associative.

Identity: We can define an identity function $Id : \mathcal{M} \to \mathcal{M}$ which simply maps any chord to itself. Inverses: Similar to closure, one can find inverses for every element in our group. In particular, we have that $P \circ P = L \circ L = R \circ R = Id$, so each function is an inverse of itself. Hence G is a group as required.

Conclusion

One can also show the group found in Theorem 1 is known as the *dihedral group* D_n (2), which is the group generated by the symmetries of a regular *n*-gon (in the case of the \mathcal{PLR} group, we get D_{12}). One can also show this group has a *subgroup* generated by \mathcal{P} and \mathcal{R} which is isomorphic to D_4 (3). These functions give various results in group theory, and can be extended further to consider functions to describe other musical concepts such as transposition of notes.